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Improved models for the pitch, batting, and post-impact flight phases of a baseball are used in an
optimal control context to find bat swing parameters that produce maximum range. The improved
batted flight model incorporates experimental lift and drag profiles~including the drag crisis!. An
improved model for bat–ball impact includes the dependence of the coefficient of restitution on the
approach relative velocity and the dependence of the incoming pitched ball angle on speed. The
undercut distance and bat swing angle are chosen to maximize the range of the batted ball. The
sensitivity of the maximum range is calculated for all model parameters including bat and ball
speed, bat and ball spin, and wind speed. Post-impact conditions are found to be independent of the
ball–bat coefficient of friction. The lift is enhanced by backspin produced by undercutting the ball
during batting. An optimally hit curve ball will travel farther than an optimally hit fastball or
knuckleball due to increased lift during flight. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

In baseball, the home run is a sure way to score and
problem of hitting the ball as far as possible is as old as
game. An analysis of the problem consists of two phas
impact and flight. Many previous investigations have cons
ered one or both of the phases of this problem. Briggs1 in-
vestigated the effects of velocity and spin on the lateral
flection of a curve ball. Baseballs spinning about a verti
axis were dropped through a horizontal wind tunnel. T
lateral deflection of the ball was found to be proportional
the spin and the square of the translational velocity
speeds up to 150 ft/s and spins up to 1800 rpm. Achenb2

characterized the drag on spheres as a function of the R
nolds number Re and the surface roughness. He showed
there is a critical Reynolds number at which the drag coe
cient CD decreases dramatically and that this critical Re
nolds number decreases as the roughness increases. Alth
a baseball is not uniformly rough, the spinning seams ca
boundary layer behavior similar to that of a rough surfac

Based on the results of Ref. 1, the knuckleball was inv
tigated by Watts and Sawyer.3 They used a wind tunnel to
determine that the lift depends on the seam orientation
relation to the relative wind velocity. They found that a
oscillating lateral force can result from a portion of the se
being located just at the point where boundary layer sep
tion occurs. Frohlich4 was the first to point out that there is
strong possibility that the drag crisis, a sharp reduction in
drag coefficient at the critical Reynolds number, occurs
speeds typical of pitched or batted baseballs. He stated
‘‘The effects of drag reduction on the behavior of bo
pitched and batted balls is significant ... the drag reduc
may help to explain why pitched fastballs appear to rise, w
pitched curve balls appear to drop sharply, and why ho
run production has increased since the introduction of
alleged ‘lively ball.’’’ Frohlich emphasized that the coeffi
cient of drag must be considered to be a function of Re~and
hence the velocity! in an accurate and realistic simulation
1152 Am. J. Phys.71 ~11!, November 2003 http://aapt.org
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baseball flight. He noted that the fastest pitchers in the m
leagues~45 m/s! produce values of Re well beyond the dra
crisis for roughened spheres and suggested that, ‘‘If a ba
desiring a home run can hit a ball hard enough to ‘pun
through’ the drag crisis, he can hit the ball considerably f
ther than would be expected if the drag coefficient were c
stant.’’

Rex5 studied the effect of spin on the flight of batted bas
balls and found that balls hit with backspin tend to trav
farther than balls hit with little spin or topspin. He assumed
constantCD of 0.5 and a Magnus force coefficient take
from the earlier work of Briggs,1 and suggested that the e
fect of backspin on increasing range is enhanced as the in
angle of the ball flight trajectory is decreased. Watts a
Ferrer6 measured the lateral forces on a spinning baseba
a wind tunnel and concluded that the lift coefficientCL is a
function of the spin parameterS5rv/v, wherer, v, andv
are the ball radius, spin and speed, respectively, and at m
a weak function of Re. Watts and Baroni7 calculated the
trajectories of batted baseballs in a vertical plane usingCD

50.5 and CL based on the data of Ref. 6. Their resu
agreed with those of Ref. 5 in that range increased w
backspin~seemingly without bound! and that as the spin in
creased, the optimum launch angle decreased.

Alaways et al.8 matched a dynamic model of baseba
flight with experimental data to identify the release con
tions and aerodynamic forces on pitched baseballs;CD was
considered constant over the trajectory of a single pitch,
generally differed between pitches. The estimatedCD ~which
showed a minimum at Re;165 000! agreed well with the
previously reported data in Ref. 2 and supported
suggestion4 that the drag crisis may affect pitched baseba

Alaways and Hubbard9 developed a method for determin
ing the lift on spinning baseballs, again matching experim
tal pitch data. Their results bridged the gap in theCL data of
Ref. 6 at low values of the spin parameter. In addition, th
results correlated well with previous data and showed t
1152/ajp © 2003 American Association of Physics Teachers
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Fig. 1. Two-dimensional impact schematic. The ba
ball contact occurs with the bat horizontal, but wit
both vertical and horizontal components of bat and b
velocities and bat and ball spin. The batted ball spe
V̂b f , launch anglez, and spinvb f are functions of pre-
impact bat and ball speed and spin, the angleg, and the
two primary batter controlled parameters,E andc.
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the seam orientation has a stronger effect onCL than Re
when the spin is small. As the spin parameter increases
influence of seam orientation decreases.

The impact problem also has been studied. Kirkpatric10

analyzed the collision between the bat and ball assuming
the bat is swung in a horizontal plane. Kagan11 did an ana-
lytical calculation of the sensitivity of the range to the coe
ficient of restitution. Other authors have considered the b
ball impact, but mostly from the point of view of ba
vibration and the location of a sweet spot.12–16

In addition to the effect of backspin on the trajectory o
baseball, the backspin that results from oblique impact w
friction between the bat and ball has been calculated.7 Clas-
sical rigid body collision theory was used to show that if t
coefficient of friction is not too small, the batter can gener
large backspin by undercutting the ball center by as muc
1–2.5 cm, although the coefficient of friction that they e
ployed~m50.05–0.1! is too small to be considered represe
tative of collisions between bat and ball. Watts and Baro7

were the first to suggest that an optimum batting strat
might exist, namely that there might be an optimum com
nation of ball backspin and launch angle for a given init
batted ball speed.

Although the optimal initial flight conditions were consid
ered in Ref. 7, the authors did not explicitly present the m
ner in which the batter could produce them. In this paper
combine improved models of both the impact and flight w
optimization techniques that allow the direct calculation
the optimum bat swing parameters~rather than initial flight
parameters!, undercut distance, and bat swing plane angle
different pitches. We also present the sensitivities of the
timal solutions to other relevant parameters and environm
tal factors.

II. METHODS AND CALCULATIONS

A. Initial conditions for impact

Figure 1 shows the kinematic properties of the bat~left!
and the ball~right! at the instant of collision. These prope
ties are expressed in an impact reference frameni oriented
relative to the common tangent plane passing through
coincident contact pointsC and C8 on the ball and bat, re
spectively. Contact is assumed to occur with the bat horiz
tal and perpendicular to the assumed vertical plane of fl
of the pitched~and batted! ball. The orthonormal impact co
ordinate frame contains a unit vectorn3 normal to the com-
1153 Am. J. Phys., Vol. 71, No. 11, November 2003
he

at

t–

h

e
as
-
-
i
y

i-
l

-
e

f

r
-

n-

e

n-
t

mon tangent plane, another unit vectorn1 in the common
tangent plane, and a unit vectorn25n3Ãn1 that is normal to
the vertical plane of flight~see Fig. 1!. Initial conditions for
the impact depend on the type and speed of the pitch as
as the bat velocity and positioning relative to the ball.

The ball velocities are initially defined in an inertial o
thogonal~flight! frame with positivex toward center field,
positivey skyward, and positivez from the pitchers mound
toward first base. The angles between the horizontal and
incident ball velocity vectorV̂b0 and between the ball veloc
ity vector and the common normaln3 , are termedg andd,
respectively, and are both positive counterclockwise~Fig. 1!.
The symbolˆ denotes the location in the flight plane of th
projection of the center of mass for a body. Subscriptsb, B,
0, f, and p denote ball, bat, pre-impact, post-impact, a
pitcher, respectively. Likewise, the bat has incident veloc
magnitudeV̂B at the pointB̂ on its axis in then1–n3 plane.
The angle between the horizontal and the bat initial veloc
vector isc, anda denotes the angle between the bat veloc
vector and the common normaln3 , again both positive coun
terclockwise. The angleu between the horizontal andn3 is
related to the undercut distance~defined as the difference in
y coordinates of the ball and bat and positive when the
axis is below the ball center; see Fig. 1! by

u5sin21S E

r b1r B
D . ~1!

The other angles satisfy the relations

d5u2g, a5u2c. ~2!

The angleg is a function of the pitch speed at the plat
V̂b0 . A faster pitched ball that crosses the plate in the str
zone has a relatively larger downward vertical velocity co
ponent, both when pitched,V̂byp , and at the plate,V̂by0 . If
we fit the data in Fig. 6 of Ref. 8,V̂byp varies with pitch
speedV̂bp roughly according toV̂byp52(V̂bp236)/3.4 in
m/s. We used the approximations thatV̂by05V̂byp2gt,
whereg is the acceleration due to gravity andt is the flight
time, t5D/V̂bp , whereD518.52 m is the distance from th
mound to home plate. We have used the fact that a typ
pitch loses about 5% of its speed during the pitchV̂b0

50.95V̂bp ~from Fig. 6 of Ref. 8!. We then estimate the fina
vertical speed of the ball at the plate given the magnitude
the ball velocity at the plate
1153Sawicki, Hubbard, and Stronge
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Table I. Model parameters and variables. The subscriptsb and B refer to ball and bat, respectively; th
subscripts 0,f, andp refer to pre-impact, post-impact, and pitch release, respectively; subscripts 1, 2, 3x,
y, z refer to the components of vectors in the orthonormal impact and inertial reference frames, respec

Symbol Description Value

g Gravitational acceleration constant 9.81 m/s2

r Atmospheric density 1.23 kg/m3

m Static coefficient of friction 0.5060.04 wood
0.3560.03 aluminum

n Kinematic viscosity of air 1.5e25 m2/s
CD Drag coefficient
CL Lift coefficient
Mb Baseball mass 0.145 kg~5.1 oz!
MB8 Bat mass 0.9 kg~31.7 oz!
r b Baseball radius 0.0366 m~1.44 in.!
r B Bat barrel radius 0.0350 m~1.38 in.!
kB1 Radius of gyration of bat for c.m. aboutn1 axis 0.217 m~8.54 in.!
kB2 Radius of gyration of bat aboutn2 axis 0.0231 m~0.91 in.!
kb Radius of gyration of ball about c.m. 0.0247 m~0.97 in.!
E Undercut distance
u Angle of common normaln3 from horizontal
a Bat swing angle from common normal
c Bat swing angle from horizontal
g Pitched ball velocity angle from horizontal
d Pitched ball velocity angle from common normal
V̂b0 Pitched ball speed at plate

V̂B0 Pre-impact bat speed atB̂
vb0 Pre-impact ball spin magnitude
vB0 Pre-impact bat spin magnitude
vb f Post-impact ball angular velocity
Vw Wind velocity
V̂b f Post-impact ball c.m. velocity
Vb f Post-impact ball velocity at contact point
VB f Post-impact bat velocity at contact point
z Post-impact ball velocity angle from horizontal
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V̂by05
2V̂b0

2 13630.953V̂b023.4230.9523g318.52

3.4230.953V̂b0

5
2V̂b0

2 134.23V̂b02561

3.253V̂b0

. ~3!

The angleg can be expressed as

g52sin21S V̂by0

V̂b0
D . ~4!

The ball has massMb , radiusr b , angular velocity mag-
nitudevb and center of mass~c.m.! velocity magnitudeV̂b ;
the bat has massMB8 , barrel radiusr B , and angular velocity
vB about its axis~Table I!. The bat has a radius of gyratio
about its axiskB2 and the ball’s radius of gyration about i
center iskb .

We further assume that the ball strikes the bat along
length at the center of percussion relative to the handle e
this point is located about 83 mm outside the center
mass.17 This assumption ensures that, as the ball strikes
bat, there will be no impulsive reaction between the han
and the batter’s hands. Furthermore, because this poin
near the nodes of the first and second free vibration mo
vibrational energy loss is minimized and a rigid body mod
for the bat is a good approximation.16 With the impact point
at some distance from the center of mass however, the e
tive inertia of the bat at the impact point is reduced. For a
hys., Vol. 71, No. 11, November 2003
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of actual massMB850.9 kg (32 oz), a radius of gyration
about a transverse axis through the center of mass,17 kB1

50.217 m, and impact at the center of percussion,
present two-dimensional analysis gives an equivalent
massMB50.8 kg to have the same impulse for the period
compression. This equivalent mass for the planar~two-
dimensional! impact analysis is calculated fromMB /MB8
5(11z2/kB1

2 )21, wherez5zcp2zc.m. is the axial distance
of the impact point from the bat center of mass.

B. Impact analysis

The analysis of the oblique impact of rough, hard bod
follows the planar rigid-body impact methodology and te
minology developed by Stronge.18 This approach is more
complex than that used in Ref. 7 and is chosen to provid
formalism that can be used in potentially more complex b
ting geometries in which the bat is not constrained to rem
horizontal and the ball and bat can have other than horizo
components of spin and lateral components of velocity. T
formalism expresses the changes in relative velocity at
contact point as a function of the normal component impu
and hence calculates the bat and ball conditions at sep
tion. Although significant ball deformations can occur duri
batting, this analysis assumes rigid-body impact where
inertia properties are invariant and contact duration is ne
gibly small as a consequence of deflections being small.
1154Sawicki, Hubbard, and Stronge
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In the impact reference frame and using indicial notati
the position vectors to the contact pointC from the center of
mass of the ballr bi and from the pointB̂ on the bat axisr B̂i
are expressed as, respectively,

r bi5S 0
0

2r b

D , r Bi5S 0
0
r B

D . ~5!

At the contact point of each body, a reaction forceFBi or
Fbi develops that opposes the interpenetration of the bo
during impact. These forces are related to differentials of
impulsedPBi anddPbi at C andC8 by

dPBi5FBidt, dPbi5Fbidt ~ i 51,3!, ~6!

where the subscripts 1 and 3 denote the tangential and
mal components of the vectors. Because the present mod
two-dimensional, the components along the two axis
identically zero. Newton’s equations of motion for trans
tion of the center of mass of the ball and pointB̂ of the bat
are

dV̂bi5Mb
21dPbi ,

dV̂Bi5MB
21dPBi ,

i 51,3 ~7!

and the differential rotation of each rigid body aboutn2 is
described by

dvbi5~Mbkb
2!21r bi3dPbi ,

~8!
dvBi5~MBkB2

2 !21r Bi3dPBi .

Using the construct of an infinitesimal deformable parti
between the points of contact,18 the changes in the relativ
velocity between the bodies at the contact pointC are ob-
tained as a function of impulsePi( i 51,3) during the contact
In order to handle distinct periods of slip or stick durin
impact, the period of collision can be characterized as a fu
tion of a continuous independent variable, the impulsePi .

The velocity of the contact point on each rigid bod
Vbi(Pbi) or VBi(PBi), is a function of the reaction impuls
and is related to the velocity of the corresponding cen
through

Vbi5V̂bi1~vbi3r bi!,
~9!

VBi5V̂Bi1~vBi3r Bi!.

The relative velocity across the contact point is the veloc
difference

v i5Vbi2VBi , ~10!

and the effective massm is defined as

m5
MbMB

Mb1MB
. ~11!

We note that the contact forces acting on each body are e
and opposite,dpi5dPbi52dPBi . If we substitute Eqs.
~7!–~9! into Eq.~10!, the differential equations of motion ca
be written in matrix form. If we express the differential o
the relative velocity at the contact point as a function of
differential impulse, we obtain

Hdv1

dv J 5m21b b1 2b2c Hdp1

dp J , ~12!

3 2b2 b3 3

1155 Am. J. Phys., Vol. 71, No. 11, November 2003
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where the elements of the inverse of the inertia matrix can
expressed as

b1511
mrb3

2

Mbkb
2

1
mrB3

2

MBkB2
2

,

b25
mrb1r b3

Mbkb
2

1
mrB1r B3

MBkB2
2

, ~13!

b3511
mrb1

2

Mbkb
2

1
mrB1

2

MBkB2
2

.

Finally, the tangential and normal components of differen
impulse can be related using the Amonton–Coulomb la18

for dry friction:

dp152msdp3 , s5H 1, v1~p3!.0

0, v1~p3!50

21, v1~p3!,0

, ~14!

wheres characterizes the direction of slip, and the static a
dynamic coefficients of friction are denoted bym and as-
sumed to be equal. The negative sign in Eq.~14! ensures that
friction opposes the direction of slip. The differential equ
tions of motion for the impact can then be expressed in te
of a single independent variable, the normal reaction impu
p3[p:

dv15m21~2msb12b2!dp,
~15!

dv35m21~msb21b3!dp.

At the contact point between bat and ball, the component
the initial relative velocity for impact are given by

v1~0!5V̂b1~0!1r b3vb2~0!2V̂B1~0!2r B3vB2~0!,
~16!

v3~0!5V̂b3~0!2V̂B3~0!.

In the bat–ball collisionr B15r b150, and thusb250 and
b351.

If we integrate Eq.~15! and set the relative velocity com
ponents to zero, we can calculate the normal impulseps
required to bring the initial slip to a halt and the norm
impulsepc that makes the initial normal relative motion va
ish ~the impulse for compression as shown in Fig. 2!:

Fig. 2. Changes in components of relative velocity with normal impulsep
during collinear impact with slip-stick at the contact point C.
1155Sawicki, Hubbard, and Stronge
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ps5
mv1~0!

msb1
, ~17!

pc52mv3~0!. ~18!

When p.ps , the tangential relative motion can eith
stick ~pure rolling ensues! or slip in the opposite direction. In
order for a collision with initial slip to stick afterps a spe-
cific ratio of tangential to normal reaction force is require
this ratio is termed the coefficient for stickm̄. For planar
impact,m̄5b2 /b1 . For the bat–ball collisionb250, so that
m̄50; consequently if slip is brought to a halt, the conta
will subsequently stick becausem.m̄.

Following the period of compression there is a period
restitution during which some normal relative motion is r
stored. Restitution ends at the final impulsepf when separa-
tion occurs. In an elastic collision all of the energy is resto
and the coefficient of energetic restitutione* 51. In an in-
elastic collision some energy is dissipated and 0,e* ,1. It
has been shown thate* is a function of the relative velocity
between the contact points~impact velocity! in the normal
direction at the instant of impact. In general,e* decreases
with increasing normal initial relative velocity. We assum
the relation betweene* and the normal relative velocity
based on a linear fit to the data of Ref. 19, which coincid
with the NCAA standard that at 60 mph, 0.525,e*
,0.550:

e* 50.5402S v3~0!226.8

400 D , ~19!

wherev3(0) is measured in m/s. The coefficient of restit
tion for aluminum bats is slightly higher than that for woo
The normal impulse at separationpf can be written as

pf5pc~11e* !. ~20!

We are interested in the ball velocity and spin after bat
pact, which depend on the final impulsepf . If ps.pf , the
contact slips throughout the impact period, and the final t
gential impulse is limited bypf . If ps,pf , slip halts during
impact and the tangential impulse is limited byps ; this oc-
curs if the initial slip is small, v1(0)/v3(0),(11e* )
3(msb1). We have

pf5S 2msps

0
pf

D , ps,pf ,

~21!

pf5S 2mspf

0
pf

D , ps.pf .

Finally, by using the results from Eq.~20!, we can express
the state of the ball at separation from impact as:

V̂b~pf !5V̂b~0!2Mb
21pf ,

~22!

vb~pf !5vb~0!1S 1

Mbkb
2D rbÃpf ,

z5u1tan21S V̂b f1

V̂b f3
D . ~23!
1156 Am. J. Phys., Vol. 71, No. 11, November 2003
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The post-impact ball velocity and spin in Eq.~22! and launch
angle in Eq.~23! define the initial conditions for simulation
of the flight phase.

C. Friction measurement

The coefficient of frictionm between bat and ball wa
measured using a variant of the inclined plane experim
Two new bats were taped together with the horizontal axe
their cylindrical barrels parallel. Two balls, also taped t
gether to prevent rolling, were set in the groove formed
the bats’ top surfaces, taking care to ensure that only
balls’ leather surfaces contacted the bats. The knobs of
bats were slowly raised until slip occurred. A thre
dimensional force balance at incipient slip shows thatm is
given by

m5tank coss, ~24!

wherek is the angle of the long axes of the bats from t
horizontal ands is half the angle between the normal vecto
to the two contact planes between a ball and the two b
Because the static and kinetic coefficients of friction are
very different in general, and because the results prese
below are relatively insensitive tom, we assume that the
static coefficient of friction determined in this way is repr
sentative of sliding as well.

D. Flight simulation

Given the post-impact ball velocity and spin@Eq. ~22!#
and launch angle@Eq. ~23!#, it is possible to calculate the
trajectory in thex–y plane~Fig. 1! and the resulting range
The spin of the ball in the flight phase follows the same s
convention as in the impact section; the batted ball backs
and pitched ball topspin are positive. The dominant grav
force Mbg acts in the negative y direction. The aerodynam
drag force acts in the direction of the relative wind veloc

Vr5Vw2Vb , ~25!

where Vb and Vw are the ball and wind velocity vectors
respectively. The drag force is given by

D5
rACDuVr uVr

2
, ~26!

where the frontal areaA5pr b
2 and r is the air density.CD

can be determined experimentally using wind tunnel or flig
tests and is a strong function of Re, where

Re5
2uVr ur b

n
, ~27!

wheren is the kinematic viscosity of air.
The drag coefficientCD is also a function of the roughnes

of the ball surface. Although over a wide range of spee
~and hence Re!, the drag coefficient for a sphere remai
nearly constant at aboutCD50.5, it was shown in Ref. 2 tha
an abrupt decrease by a factor of between 2 and 5 in d
~termed the ‘‘drag crisis’’! occurs at a value of Re in th
range 0.63105,Re,4.03105, depending on the roughnes
of the surface. The work of both Refs. 2 and 4 makes it cl
that to obtain accurate baseball trajectories, it is essential
the drag crisis be included in the model through the dep
dence ofCD on Re.
1156Sawicki, Hubbard, and Stronge
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In our model this dependence~Fig. 3! is taken from
pitched baseball data collected at the 1996 Atla
Olympics.8 We fit two exponential functions to the da
points, one below and one above the drag crisis, each ri
from the minimum value forCD (0.15) at values of Re nea
the drag crisis~;160 000 and 175 000!. Also shown in Fig. 3
are baseball drag data from wind tunnel tests of nonspinn
balls20 in which a less severe drag crisis occurs at almost
same values of Re. Apparently the severity of the drag cr
is different for spinning and nonspinning balls. Briggs1 has
reported that, in an experiment by Dryden, a baseball
suspended in the air stream of a vertical wind tunnel with
airspeed about 42.7 m/s~Re5208 000!, which results inCD

50.3 ~plotted ass in Fig. 3!. The measurements of Ref.
indicate that this point lies on a section of the drag cu
whereCD is increasing~during recovery from the drag cri
sis!, rather than on the slowly descending portion shown
Ref. 17.

Lift, the component of the aerodynamic force perpendi
lar to the relative wind velocity, is given by

L52
rCLAVr "Vr

2

VrÃvbn2

uVrÃvbn2u
. ~28!

The lift coefficient,CL , is only a weak function of Re, bu
depends on the orientation of the seams~two and four seam
pitches are defined by the number of seams that trip
boundary layer at the ball’s surface during each rotation!. In
addition, CL strongly depends on the spin parameterS
5r bvb /uVr u ~see Fig. 4!. The lift coefficient used in the
flight simulation is marked by a line and is a bilinear best
to all CL vs Sdata from previous work of Watts and Ferre6

Alaways and Hubbard8 and unpublished work of Sikorsk
and Lightfoot,8

CL51.5S, S<0.1,
~29!

CL50.0910.6S, S.0.1.

This approximation ignores the effect of seam orientat
that is present only at low spin.

Fig. 3. Drag coefficientCD vs Reynolds number Re. The drag decrea
precipitously at Re 1.63105 (V;32 m/s572 mph) which strongly affects
the batted range.
1157 Am. J. Phys., Vol. 71, No. 11, November 2003
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Shear stresses on the spinning ball surface cause a to
about the center of mass. It was estimated that the spin
cays by only about 1.5% over a typical 5 s flight when
v5800 rad/s.7 Recent experimental research21,22 on golf
balls has measured spin decay characteristic times of a
16 s. When these results are extended to the case of bas
they predict characteristic times of between 30 and 50 s,
result in slightly larger~10%–15%! spin decay in a typical
flight. Because of the decreasing slope of theCL –S curve,
however, this longer decay time would result in only a 6%
10% change in the lift coefficient, and this only at the end
the flight. For these reasons we have neglected the deca
the spin entirely and assume as in Ref. 7 that spin is cons
throughout the flight.

Note that the spin decay time constant and the functio
dependencies of the drag and lift forces on Re and spin
rameter are among the least well understood parts of
model. Further research is needed to provide a more deta
understanding of these relationships, but the dependen
that we have assumed are our best estimates at present

State equations were numerically integrated~using
MATLAB 23 functionode15sfor stiff systems! to determine the
ball flight trajectory with the forces due to gravity, drag, a
lift included. The velocity and angular velocity initial cond
tions were obtained at separation from impact. The ini
ball height was taken to bey(0)51 m. The range was de
termined by interpolating to finding the horizontal distan
x(t f) at the timet f when the ball strikes the ground,y(t f)
50.

E. Batting for maximum range

The batting problem consists of two phases; impact a
flight. Each phase can be simulated usingMATLAB input–
output functions, and the phases can be linked because
final conditions on the ball from the impact serve as init
conditions for the flight. The modular nature of the proble
is convenient because it allows the phases to be studied s

s

Fig. 4. Lift coefficientCL vs spin parameterS. The large effect of ball spin
orientation~two seam vs four seam pitches! at smallS decreases asS in-
creases.
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rately and in sequence with a single simulation that ta
impact initial conditions and outputs the range of the bat
ball.

Furthermore, the problem can be posed as one of opt
control. The objective of the optimization is to maximize t
range of the batted ball subject to variables over which
batter has control and that have optimum values that
independent of the constraints of the model. The control v
ables are the undercut distanceE and the bat swing anglec.
The initial conditions (Vb0 ,VB0 ,vb0 ,vB0 ,Vw) are not opti-
mizable; that is, the optimization would either increase
decrease them without bound to achieve maximum ran
The MATLAB function fminsearch23 was used to find the op
timum control variables by minimizing the negative ran
~maximizing positive range! with the Nelder–Mead simplex
direct search method tolerances set to 0.0001.

III. RESULTS AND DISCUSSION

By using Eq.~24!, the static coefficient of frictionm be-
tween a new ball and new bats of wood and aluminum w
measured to be 0.5060.04 and 0.3560.03, respectively. Al-
thoughm will probably change with wear and, in the case
wood bats, may be more a function of the surface finish t
the underlying material, these values are markedly lar
than even the largest value considered in Ref. 7. This m
realistic value of the coefficient of friction has substant
implications for the backspin a batter is able to achieve
the undercut required to produce it.

The impact simulation was used alone to study the effe
of undercut distance and bat swing angle on batted ball
and launch angle. In Figs. 5 and 6vb f andz are shown as a
function of the undercut distanceE for c50. Figure 5 shows
the post-impact ball angular velocity as a function ofE for
three values ofm50.05, 0.35, and 0.50, and for an initial ba
spin of vb052200 rad/s. Other conditions held consta
were V̂b0538 m/s, V̂B0532 m/s ~as in Ref. 7! and c50. A

Fig. 5. Post-impact ball angular velocityvb f vs undercut distanceE. For
reasonably large coefficients of friction 0.35,m,0.5, the same spin is
achieved for all fairly hit balls~z,p/2!.
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realistic vertical component of the ball velocity prior to im
pact was calculated from Eq.~3!, V̂by0525.7 m/s, unlike
the assumption in Fig. 2 of Ref. 7 thatV̂by050. This differ-
ence in vertical velocities shifts the curves to the right ab
3 mm, but otherwise causes little change.

For a given value ofm, the batted ball backspin increase
as the undercut distanceE increases, but at a rate only abo
1/3 that predicted by Fig. 2 of Ref. 7. Although the curves
Watts and Baroni7 are similar, there appears to be a nume
cal error in their results. For smallE, slip halts during the
collision, and at a critical value ofE, a cusp in the curve
corresponds to the undercut at which slip halts exactly at
moment of separation. Slip is maintained throughout imp
for largerE.

For even the smallest realistic value ofm50.35 ~alumi-
num!, the slip halts during impact for undercuts less thanE
50.64, in other words, for almost all batted balls~even foul
balls!. A batted backspin of 1000 rad/s can be achieved fo
pitched fastball, but this requires an undercut ofE
50.068 m rather than the 0.025 that would be extrapola
from Fig. 2 of Ref. 7. The effects of finite deformation on th
change in the spin during impact are likely to increase
ratio of the impulse for sliding to the impulse for compre
sion ps /pf , because the greater deformation of the b
slightly increases the moment of inertia and reduces the
dial distance between the center-of-mass and the con
point. Nevertheless, in almost all cases slip halts before s
ration so that the modest finite deformation occurring dur
batting does not significantly alter the calculated change
spin.

Predictions of post-impact launch angle~Fig. 6! are sig-
nificantly affected by the value of the coefficient of friction
If we use realistic values ofm and an undercutE
50.040 m, we obtain a launch anglez50.731 rad, consider-
ably ~8.6°! less than the value ofz50.881 rad form50.05.

Fig. 6. Post-impact launch anglez vs undercut distanceE. For reasonably
large coefficients of friction 0.35,m,0.5, the same launch angle i
achieved for all fairly hit balls (z,p/2).
1158Sawicki, Hubbard, and Stronge



bal
Table II. Optimum control variables and maximum range for typical pitches. Slower curve balls with pitched topspin can be batted farther than fastls with
backspin because batted speed and launch angle need not be sacrificed for spin.

Pitch type
V̂b0

~m/s!
V̂B0

~m/s!
vb0

~rad/s!
V̂b f

~m/s!
vb f

~rad/s!
z

~rad!
Eopt

~m!
copt

~rad!
Optimal

range~m!

Fast 42.00 30.00 2200.00 44.30 191.35 0.4600 0.0265 0.1594 134.798
Knuckle 36.00 30.00 0.00 44.04 226.87 0.4499 0.0250 0.1549 135.771
Curve 35.00 30.00 200.00 43.04 276.78 0.4245 0.0223 0.1152 138.831
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However, with both wooden and aluminum bats, the sa
launch angle is achieved up toE50.064 m, so that the dif-
ferences between the two are unimportant.

Figures 5 and 6 show that, although it is important to u
realistic values ofm, the 0.15 difference betweenm for alu-
minum and wood makes no appreciable difference in batt
As long as the friction is large enough to halt slip during t
collision, any additional friction does not help. For all ba
hit into the field of play, wood and aluminum bats beha
identically with regard to the effect of friction because s
does halt during impact. This is because, in batting, the
tial ratio of tangential to normal velocities of the conta
point is so small. Adair17 ~p. 77! has made essentially thi
point in a less technical way without resort to the concep
‘‘coefficient of friction,’’ noting that it is probably futile to
modify the bat in an attempt to increase the friction betwe
it and the ball.

Combining the impact and flight models, two-dimension
optimizations of range were done inE–c space for a con-
stant initial bat speedV̂B0530 m/s and no initial bat angula
velocity (vB050 rad/s) for the fastball parameter set~Table
II ! and no wind. Shown in Fig. 7 are contours of const
range for a fastball. The optimum range of 134.80 m~442 ft!
occurs atE50.0265 m and bat swing anglec50.159 rad
~9°!, shown as pointO in Fig. 7. The optimum is more sen
sitive to variations inE than to those inc, but there is little
correlation between the two. To obtain a range greater t
120 m, it is necessary to maintain an undercut in the re

Fig. 7. Fastball range contours in control parameter space (E,c). The maxi-
mum range is less sensitive to changes in the bat swing anglec than the
undercut distanceE.
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tively narrow range 0.020,E,0.036 m while still choosing
c correctly, whereas this range can be obtained with the
rect value ofE over a much wider range in bat swing ang
of roughly 20.3,c,0.7 rad. Thus optimal hitting is much
more sensitive to bat placement than to the direction of
bat velocity at contact.

Optimal values (Eopt,copt) for the undercut and bat swin
angle that result in maximum range were computed fo
fastball, curve ball, and knuckleball. The results are repor
in Table II with the assumed characteristics of each pi
type and post-impact ball speed, rotation rate, and lau
angle ~initial flight conditions!. Optimizations for different
types of pitch~knuckleball and curve ball, Table II! yielded
similar shaped contours with optima only slightly displac
from that of the fastball in Fig. 7. Table II shows clearly tha
as the spin on the pitch changes from backspin~fastball! to
topspin ~curve ball!, the amount of undercut required fo
maximum range decreases, but only by about 4 mm, wh
was first noted in Ref. 7. In addition, the optimum bat swi
anglec decreases slightly from 0.1594 to 0.1152 rad.

Perhaps the most surprising result in Table II is that
range of the optimally batted curve ball islarger than that of
the optimally hit fastball. It is widely held~see, for example,
Ref. 17, p. 93! that ‘‘For a given bat speed, a solidly h
fastball goes farther than a well-hit slow curve.’’ This beli
is not true due to the overwhelming importance of spin
range. Note that the batted ball speed of the fastbal
slightly ~1.26 m/s! higher than that of the curve ball, du
mainly to the larger pitch speed. But the batted backs
~191 rad/s! for the fastball is 30% smaller than that of th
curve ball because the pitched fastball has backspin that m
be reversed during batting, whereas the curve ball has in
topspin that is augmented. This larger backspin for the cu
ball increases the optimal range by 4.0 m. Finally, note t
the launch angles of the optimally batted balls decrease m
mally from 0.4600 to 0.4245 rad~26.3° to 24.3°! as the
pitched spin changes from backspin to topspin. This eff
also has been noted in Ref. 7. These launch angles are
siderably less than the roughly 35° previously thought to
needed to clear the outfield fence~Ref. 17, p. 97!.

It is important to be clear about the assumptions and th
effects on the results. For this reason we have done com
hensive sensitivity studies of many of the parameters.
each case the parameters were varied and the optimal be
ior calculated, holding other parameters constant at their
ues for a fastball.

Another of the variables that is not well known is b
speed, because it has infrequently been measured. Altho
our bat velocity of 30 m/s is representative of the ‘‘swe
spot’’ velocity for major league hitters, a bat speed ofVB0

526 m/s has been measured for ‘‘average’’ college hitters
Fleisiget al.24 Welchet al.25 measured a maximum linear ba
velocity of 31 m/s. Figure 8 shows that the optimal range
1159Sawicki, Hubbard, and Stronge
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enormously sensitive to this variable. Increasing the
speed by only 1 m/s increases the optimal range by near
m. And although the optimum undercut varies by only a f
millimeters over the entire range of bat speeds conside
the best bat swing angle decreases until a level swin
optimal at a bat speed of 42 m/s. Above this speed i
optimal to swing down on the ball.

Some batting manuals teach that rolling the wrists dur
the swing can increase batting performance. Figure 9 sh
that this effect is minimal. A bat angular velocity of 50 or 6
rad/s is the largest conceivable roll rate, but this roll r
achieves only a modest increase of 1.8 m in the optim
range. Almost certainly, the penalties paid for this unnatu
motion would be significantly greater than the bene
gained.

Even though we have above retired the myth that fastb
can be hit farther than curve balls, Fig. 10 shows that a fa
fastball can indeed be hit farther than a slower one. Slo

Fig. 8. Sensitivity of the fastball optimum range and control variables to
velocity, the most important batting factor.

Fig. 9. Sensitivity of the fastball optimum range and control variables to
angular velocity. Pre-impact bat spin affects range only minimally and pr
ably should not be used in a batting strategy to increase range.
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fastballs should be hit with more undercut and largerc. Al-
though it is possible to hit a curve farther than other pit
types, it is probably more difficult to achieve the optim
hitting conditions for a curve ball because its pitched traj
tory has a substantially larger curvature.

Figure 11 reinforces the point made earlier that a ball w
topspin can be hit farther than one without. The maximu
range increases with pitched topspin, if pitch velocity and
velocity are held constant. Figure 11 also demonstrates
as pitched topspin increases, both the optimal undercut
bat swing angle decrease. A comparison of Figs. 10 and
shows that the possible increase in range of about 8 m due to
pitched ball spin changes alone~which can certainly vary
between2200,vb0,200 rad/s) outweighs that of about
m due to pitched ball speed variations alone (35,Vb0

,45 m/s).

t

t
-

Fig. 10. Sensitivity of the fastball optimum range and control variables
pitched ball velocity.

Fig. 11. Sensitivity of the fastball optimum range and control variables
pitched ball angular velocity. At the same pitch speed, pitched ball tops
increases batted ball backspin and consequently lift~Fig. 4! and increases
range substantially.
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In all of the sensitivity studies note that thecopt figures are
uniformly the least smooth, indicating that the optimizati
calculations are probably least accurate in this variable. T
is to be expected because, as previously noted, the ridg
the range contours is longest and flattest in thec direction,
contributing to the difficulty of achieving accurate results
this direction.

Figure 12 illustrates the sensitivity of optimal range
pure headwinds (Vw,0) and tailwinds. As expected, with
tailwind the optimal strategy is to uppercut more and there
increase the flight time during which the effects of the wi
can be active.

The sensitivity of the optimal range to undercut is illu
trated in Fig. 13, which is a slice of the optimal range surfa
at c50.1594 ~the optimum value for a fastball!. The two
points labeledA andB differ only in undercut by 6.5 mm and
their ranges differ by 7.3 m. Shown in Fig. 14 is a plot of t
drag coefficients on the two trajectories as functions of tim

Fig. 12. Sensitivity of the fastball optimum batted range and control v
ables to wind velocity. Head winds from the outfield correspond toVw,0.

Fig. 13. Fastball range vs the undercut distance atc50.1594. PointsA and
B differ in undercut distance by 6.5 mm and in range by 7.3 m.
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The initial conditions of pointsA (V̂b f544.34 m/s, vb f

5182.4 rad/s, andz50.448 rad! and B (V̂b f543.63 m/s,
vb f5308.3 rad/s, andz50.615 rad! differ substantially in
batted ball spin and in launch angle. In spite of these diff
ences, both trajectories pass through the drag crisis slow
during the ascent and lose enough energy to drag so that
remain below the drag crisis during the descent. The m
effect on the range appears to be the increased time spe
high drag by trajectory B.

IV. CONCLUSIONS

The aim of this study was to establish an optimum strate
for hitting a baseball. The results we have presented sh
the following.

~1! It is important to utilize impact and flight models that a
as realistic and complete as possible. Without accu
simulations, optimization is pointless. Our flight mod
includes the experimental lift and drag coefficient depe
dence on Re and spin parameter. The impact model tr
collision relative velocity as a function of impulse an
incorporates the dependence of the energetic coeffic
of restitutione* on the impact relative velocity and th
dependence of the pitched ball angle with the horizon
g, on pitch speed.

~2! The bat–ball coefficient of frictionm is near 0.50 for
wooden bats and 0.35 for aluminum bats.

~3! Within a realistic range~0.35–0.50!, the value ofm does
not affect batted ball spin, velocity, or launch ang
Therefore, any effort to increase backspin on the bat
ball by increasingm is futile.

~4! The batted ball clearly goes through the drag crisis. T
resulting sharp reduction in drag leads to ranges con
erably larger than would be achieved with a perfec
smooth ball which would experience drag coefficien
nearCD50.5 for much, if not all, of its flight.

~5! There is an optimal strategy for achieving maximu
range. For a typical fastball the batter should under
the ball by 2.65 cm and swing upward at an angle 0.15
rad.

-Fig. 14. CD vs time in flight for the trajectories corresponding to both poin
A andB in Fig. 13. The high sensitivity of range to undercut distance can
partially attributed to the effects of the drag crisis.
1161Sawicki, Hubbard, and Stronge
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~6! The optimally hit curve ball will travel farther than bot
the fastball and knuckleball, because of beneficial t
spin on the pitched curve ball that is enhanced dur
impact with the bat.

~7! Range is most sensitive to bat speed, which suggests
a batter ought to work on bat speed before anything e
to increase the range of his/her hits.

~8! Range is not very sensitive to wrist roll. Attempts to ro
the wrists on impact do not increase range enough fo
to be a useful and advantageous strategy. Wrist roll m
actually limit bat speed, which is clearly more importa

~9! For a given pitch type, range increases with pitch spe
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A VIEW OF EINSTEIN

Nevertheless, the loftiness of his thought, as over against the brutality of the times and of its
applications, was such that even the public obscurely sensed in him the symbol of the cultural
predicament of physics: in the sad, sweet face; in that simplicity more suited to some other
civilization, some gentler world; in the strange, the often inappropriate moments chosen for
speech; in the great, the profound, the somehow altogether impersonal benevolence; in what
shames the spotted adult as the innocence of a wise child.

C. Gillispie, The Edge of Objectivity~Princeton University Press, 1960!, p. 519.
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